Abstract

The recent advances in graphene isolation and synthesis methods have enabled potential applications of graphene in nanoelectronics and thermal management, and have offered a unique opportunity for investigation of phonon transport in two-dimensional materials. In this review, current understanding of phonon transport in graphene is discussed along with associated experimental and theoretical investigation techniques. Several theories and experiments have suggested that the absence of interlayer phonon scattering in suspended monolayer graphene can result in higher intrinsic basal plane thermal conductivity than that for graphite. However, accurate experimental thermal conductivity data of clean suspended graphene at different temperatures are still lacking. It is now known that contact of graphene with an amorphous solid or organic matrix can suppress phonon transport in graphene, although further efforts are needed to better quantify the relative roles of interface roughness scattering and phonon leakage across the interface and to examine the effects of other support materials. Moreover, opportunities remain to verify competing theories regarding mode specific scattering mechanisms and contributions to the total thermal conductivity of suspended and supported graphene, especially regarding the contribution from the flexural phonons. Several measurements have yielded consistent interface thermal conductance values between graphene and different dielectrics and metals. A challenge has remained in establishing a comprehensive theoretical model of coupled phonon and electron transport across the highly anisotropic and dissimilar interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.