Abstract

Chiral conformal field theories are characterized by a ground-state current at finite temperature, that could be observed, e.g., in the edge excitations of the quantum Hall effect. We show that the corresponding thermal conductance is directly proportional to the gravitational anomaly of the conformal theory, upon extending the well-known relation between specific heat and conformal anomaly. The thermal current could signal the elusive neutral edge modes that are expected in the hierarchical Hall states. We then compute the thermal conductance for the Abelian multi-component theory and the W 1+∞ minimal model, two conformal theories that are good candidates for describing the hierarchical states. Their conductances agree to leading order but differ in the first, universal finite-size correction, that could be used as a selective experimental signature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call