Abstract

Thermal transport and energy dissipation are important for a material in both thermoelectric and electronic devices. Here, we investigate the lateral and interfacial thermal transport of two-dimensional (2D) Bi2O2Se by Raman spectroscopy. It is found that thin Bi2O2Se flakes have a low in-plane thermal conductivity while maintaining an appropriate interfacial thermal conductance. The in-plane thermal conductivity of Bi2O2Se decreases with decreasing thickness, to as low as 0.92 ± 0.18 W⋅m−1⋅K−1 at a thickness of ∼8 nm. Such a low thermal conductivity is derived from the low phonon group velocity, strong anharmonicity, and large surface scattering of acoustic phonons of the Bi2O2Se thin layer. Simultaneously, thinner Bi2O2Se presents a higher thermal dissipation to the substrate than the thicker counterparts in the device. The interfacial thermal conductance increases with decreasing thickness, and reaches ∼21 MW⋅m−2⋅K−1 at ∼8 nm. These results provide critical information for the design of thermoelectric devices with high figures of merit and electronics with low-power consumption based on 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call