Abstract

We study a quantum system composed of three interacting qubits, each coupled to a different thermal reservoir. We show how to engineer it in order to build a quantum device that is analogous to an electronic bipolar transistor. We outline how the interaction among the qubits plays a crucial role for the appearance of the effect, also linking it to the characteristics of system-bath interactions that govern the decoherence and dissipation mechanism of the system. By comparing with previous proposals, the model considered here extends the regime of parameters where the transistor effect shows up and its robustness with respect to small variations of the coupling parameters. Moreover, our model appears to be more realistic and directly connected in terms of potential implementations to feasible setups in the domain of quantum spin chains and molecular nanomagnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.