Abstract

Transient thermal responses of GaAs field-effect transistors (FETs) in the presence of an electromagnetic pulse (EMP) are investigated in this paper. The numerical methodology employed is an efficient nonlinear finite-element method (FEM) that combines the element-by-element FEM and the preconditioned conjugate gradient technique. Parametric studies are carried out to show different pulse parameters on the transient thermal responses as well as maximum channel temperatures of some typical GaAs FETs, with silicon FETs also taken into account for comparison. It is numerically proven that the thermal impact caused by medium EMP will be the most serious compared with fast EMP or ultra-wideband pulse, and the captured maximum channel temperature is proportional to the input power density, approximately of the EMP injected. This research can serve as a base for taking further protection measures to prevent on-chip device from breakdown by the attack of an EMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.