Abstract
We examine the possibility that crystalline hematite (α-Fe2O3) deposits on Mars were derived from the precursor iron oxyhydroxide minerals akaganeite (β-FeOOH) or lepidocrocite (γ-FeOOH) and compare them to an earlier study of goethite (α-FeOOH) and magnetite (Fe3O4) precursors. Both the mid-infrared and visible/near infrared spectra of hematite are dependent upon the hematite precursor mineral and the temperature of transformation. Laboratory spectra are compared to spectra from the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) and the Mars Exploration Rover (MER) Opportunity Mini-TES and Pancam experiments, allowing us to infer the formation environment of Martian crystalline hematite deposits. Akaganeite and lepidocrocite readily transform to hematite at temperatures of 300 and 500°C, respectively. The visible/near-infrared and mid-infrared spectra of akaganeite-derived hematite are poor matches to data returned from TES, Mini-TES, and Pancam. The spectra of lepidocrocite-derived hematite are slightly better fits, but previously published spectra of goethite-derived hematite still represent the best match to MGS and MER spectral data. The experiments demonstrate that hematite precursor mineralogy, temperature of formation, and crystal shape exert a strong control on the hematite spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.