Abstract

SummaryLepidomelane, an iron-rich biotite, was heated in air or in vacuum, or by electron bombardment, and the processes of dehydration and transformation were studied by means of X-ray diffractometry, optical microscopy, and electron microscopy. By heat treatment, vacancies are at first formed by the evaporation of water molecules and alkali ions, and they move and condense to form holes, which act as preferential nucleation sites for new phases. Other preferential sites are edges of exposed silicate sheets along microcracks, and these are decorated by a newly formed maghemite- like mineral whose a is 10.20 Å (on a hexagonal cell), so that the sites can be clearly seen even under the reflection microscope. By heating at higher temperatures or prolonged heating, various phases, olivine, hematite, magnetite, and leucite are formed, depending upon the conditions of dehydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call