Abstract

Pollinating insects can be exposed to temperatures far from ambient air when visiting flowers, reducing their warming tolerance. Typically, such scenario occurs when flowers are exposed to solar radiation. The case of thermogenic flowers is particular because they warm up even when they are not exposed to solar energy. The flowers of Arum attract their pollinators with a deceptive method and trap them for a whole day, thereby imposing elevated temperature to visiting insects. Therefore, we predict a relatively high basal thermal tolerance in those insects. The aim of this study was to assess the thermal tolerance and warming tolerance of females of two fly species (genus Psychoda) pollinating Arum sp. (thermogenic plant). We measured their critical temperature (CTmax) and its response to rate of temperature increase as well as acclimation period to moderate temperature of 25 °C. We found relatively low CTmax (33.7 °C on average) for both species, and a weak response to acclimation period and ramping rate. In general, the thermal tolerance increased with a rapid ramping in temperature. To evaluate the warming tolerance, we compared thermal tolerance limits to flower temperatures measured in the field. We highlighted that the temperature of the thermogenic floral organ could reach values close to the thermal tolerance threshold of pollinators. This discovery raises questions about the sustainability of the interaction between these thermogenic plants and their pollinators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.