Abstract
The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of three isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by an annual temperature amplitude of less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies, although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.