Abstract
H-alpha and visible spectroscopy (HA&VS) diagnostic in ITER is aimed at the measurements of the intensity of hydrogen isotopes and of impurity lines in the SOL emission. It is based on the endoscope scheme with the first mirror unit (FMU) containing two mirrors (flat and aspheric) located behind a small entrance pupil and a discharge cleaning system. A primary candidate material for the FMU mirror is a single-crystal molybdenum (SC-Mo). A sandwich-like design is proposed, in which few small-sized SC-Mo plates are bound by a diffusive welding to a large-size polycrystalline Mo substrate. An acceptable welding regime is presented. A recent progress is discussed on the polishing of SC-Mo focusing mirrors up to 150mm diameter. Thermal tests of the molybdenum FMU mock-up had been performed. The FMU was heated up to 200°C whereas the mirror temperature was up to 300°C under the pressure of 8–9Pa. A technique for the quantitative assessment of the image quality (contrast and resolution) at the elevated temperatures has been suggested. As a result, a sub-mm shift of an image plane along the optical axis had been observed with no significant degradation of the image quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.