Abstract

The viscoelastic nature of bulk metallic glasses (BMGs), their low thermal conductivity, and the fast cooling used in their processing subject them to thermal tempering. This process leads to a residual stress state in which compression on the surface is balanced by tension in the interior. For the first time, we have calculated such stresses in metallic glasses by adapting an analytical instant-freezing model previously developed for silicate glasses. This model has been demonstrated to be reasonably accurate in predicting the final residual stresses, although, due to its very nature, it neglects transient effects. For an infinite plate geometry and employing processing parameters often used for metallic glasses, we predict that significant residual stresses can be generated in these materials during thermal tempering. Preliminary measurements conducted using the layer-removal method yield compressive residual stress values close to model predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.