Abstract

AbstractCarbon fiber reinforced polymer (CFRP) laminates are modified to enhance their suitability for various thermal applications. A synergistic approach utilizing the effect of various conductive and insulative modifiers with diglycidyl ethers of bisphenol A (DGEBA) epoxy resin and/carbon fiber (CF) is explored. In CFRP laminates developed after modifications made in epoxy resin using a thermoplastic material, such as polycarbonate (PC) and/or acrylonitrile butadiene styrene (ABS), exhibit high thermal resistance (TR) of 77.1% compared to unmodified CFRP. In contrast, modifications made using conductive mediums like phosphonium (P), imidazolium (I), or silanized‐graphene oxide (SGO) have lower TR of 25.7%, 30.5%, and 32.4%, respectively. A temperature gradient (TG) enhancement of 75% is reported for the 1.5 wt% PC/ABS modified CFRP laminates. On the contrary, modifications using 0.5 parts per hundred (phr)P, 0.5 phr I, and 1 g L−1 SGO in epoxy reduce the TG by 25%, 30%, and 32%, respectively. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analyses are done to explore the thermal characteristics of each case of modification. Finally, scanning electron microscopy images confirm the distribution profile of the modifiers used. Based on the types of modifications performed, the current study can offer insightful information on the thermal performances of modified CFRP laminates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call