Abstract

Optical confinement can induce enhancement of the resonance energy transfer between fluorescent molecules by influencing the interaction between the different available energy levels. We study the energy transfer between a pair of molecules, tris(2-phenylpyridine) iridium and bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum, which are extensively used in organic light-emitting diode technologies. These molecules have previously shown Forster energy transfer. We present the result of the dipolar coupling of these two molecules embedded in a poly(N-vinylcarbazole) film and inserted in a colloidal photonic crystal. Due to the presence of the photonic band gap, the efficiency of the energy transfer has been improved. A thermal study of the emission under the effect of the photonic band gap has been performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.