Abstract

This work focuses on the thermal characterization of a calcium silicate-based material synthesized with different solid wastes (chamotte and marble) for use as thermal insulation material. Thermal and structural changes occurring during heating were accompanied by differential thermal analysis, thermogravimetric analysis, dilatometric analysis, open photoacoustic cell technique, X-ray diffraction (XRD), and scanning electron microscopy. An endothermic event at 823.2 °C was interpreted as decomposition of carbonates. An exothermic event around 900 °C is associated with the crystallization of calcium silicate phases mainly wollastonite. The themophysical properties of the calcium silicate-based material (thermal diffusivity, thermal conductivity, specific thermal capacity, and thermal effusivity) are influenced by the synthesis temperature. The thermal analysis results agree well with the XRD. The calcium silicate pieces presented low thermal conductivity values (0.227−0.376 W m−1 K−1). These results suggest that the calcium silicate-based materials produced essentially with chamotte and marble wastes has high potential to be used as thermal insulation construction material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.