Abstract

<p>The main objective of this work is to develop film and study the thermal characteristics of polysaccharides films at various concentration of carrageenan in the mixture by calculating activation energy of polysaccharides films. There were four (4) film samples of two polysaccharides combination; arabic gum (AG) and carrageenan (C) with different formulations; sample A, sample B, sample C and sample D prepared. Sample A film is the control sample that contained only arabic gum and distilled water (DI) with 40% weight arabic gum per volume DI water (w/v%). Meanwhile for sample B and C were prepared with concentration 40 w/v% of Arabic gum and two differents of carrageenan concentrations; 1 w/v% and 10 w/v% respectively. Polyethylene glycol 400 (PEG 400) as a plasticiser was added into sample D film. The sample films were thermally characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) under nitrogen atmosphere. The major thermal transitions as well as, activation energies of the major decomposition stages were determined. Sample A and B films exhibited the highest (112.43 kJ/mol) and the lowest (102.89 kJ/mol) activation energy of thermal decomposition, respectively. The activation energies were lower at larger amounts of sulfate groups from carrageenan on the degradation reactions. The DSC trend for all samples shows two (2) major intense peaks recorded in the DSC thermograms; an endothermic transition at temperature around 100<sup>°</sup>C and followed by an exothermic transition at temperature around 300<sup>°</sup>C. The endothermic transition is due to the heat absorption for dehydration of water, H2O and the decomposition of samples process. Meanwhile, the exothermic transition is caused by the formation of H<sub>2</sub>O, CO and CH<sub>4</sub> in polysaccharide film from dehydration, depolymerisation and decomposition at the high-temperature stages.</p><p>Chemical Engineering Research Bulletin 19(2017) 80-86</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.