Abstract

Abstract In order to study the thermal structure of active thrust belts, we have developed a numerical model of conductive heat transfer between thrust sheets during deformation. Our finite difference approach alternates small, instantaneous increments of displacement and isotherm translation with conductive relaxation of perturbed isotherms. In each step, conduction occurs for a length of time equal to the displacement increment divided by the thrust velocity. Computer simulations demonstrate that conductive heat transfer is significant during deformation and that temperatures in hanging‐wall rocks decrease while temperatures in foot‐wall rocks increase over distances of up to 10 km from the thrust surface. When the effects of internal heat production are also calculated, heating of foot‐wall rocks exceeds cooling of hanging‐wall rocks. Rocks located between two thrusts may experience a complicated temperature–time path of early heating followed by cooling. These models help to explain the rapid metamorphism of rocks in the Taconian thrust belt in the northern Appalachians of New England soon after deposition of the youngest sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.