Abstract

Well-dispersed undoped and copper-doped zinc oxide nanoparticles (Zn[Formula: see text]Cu[Formula: see text]O, [Formula: see text] = 0, 1, 5 and 10 wt.%) have been synthesized by precipitation method at room temperature. X-ray diffraction data revealed that the undoped and copper-doped zinc oxide nanoparticles are in phase pure wurtzite structure and the crystallite size increases from 24 nm to 36 nm with increase in dopant concentration. The optical band gap was found to decrease with increasing dopant concentration, which clearly indicates the blue shift. High-resolution scanning electron microscope image shows that the synthesized samples consist of an assembly of nanopetals. Transmission electron microscope image also confirmed the average particle size of 20–50 nm. Energy-dispersive X-ray spectrum shows that the prepared samples are free from impurities. Photoluminescence spectra exposed that copper ions are doped into the lattice positions of ZnO. A simultaneous differential scanning calorimeter/thermogravimetric analysis combination was used to study the phase variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call