Abstract

A thermal-structural coupling analysis model of the hoop-column antenna is established with considering of the mutual influence between the deformation and heat conduction of the cable net and thin-walled tube truss in the antenna. In this model, the circumferential temperature gradient of the thin-walled tube is considered by using the Fourier thermal element model, while only the axial heat conduction is considered in the cable thermal analysis model. The accuracy of the established thermal-structural coupling analysis models of the cable and tube beam are verified by two numerical tests. Modal analysis as well as the frequency sensitivity analysis with respective to several structure parameters are performed. The modal analysis results are also verified by finite element (FE) simulation using the commercial FE software ANSYS. Thermal-structural coupling performances of the hoop-column antenna with and without considering of the reflector shadow effect being considered are conducted and compared through the established model. Temperature fields and displacements of the hoop-column antenna under unidirectional solar heat flux shocks in different directions are also calculated and compared. On this basis, influences of some key structural parameters on temperature and deformation of the hoop-column antenna are also examined. The thermal-structural coupling dynamic model established in this work can contribute to the early design of the hoop-column antenna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call