Abstract

The asphalt pavement is regarded as a multilayered elastic half space axisymmetrical body. By introducing the relationship between material characteristics and temperature into the fundamental equations of thermoelasticity and using mathematic methods of Laplace and Hankel integral transformation, the stiffness matrix for a layer is derived firstly. Then the global stiffness matrix is established for multilayered elastic half space using the finite element concepts in which layers are completely contacted. Therefore, explicit solution for thermal stresses of the asphalt pavement is obtained from the solution of the algebra equation formed by global stiffness matrix and the inverse Hankel and Laplace integral transformation. Because the elements of matrix do not include positive exponential function, the calculation is not overflowed and the shortages of transfer matrix method are overcome. This approach serves as a better model for real pavement structure as it takes into account the relationships between the material characteristics and temperature in the pavement system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.