Abstract

Elevated temperatures due to climate change pose a variety of environmental risks to the freshwater ecosystem. At the same time, zinc oxide (ZnO) has become widely used and has entered the freshwater environment. As thermal stress may potentially impact the physicochemical properties of ZnO, its toxicity to freshwater organisms in the face of global warming is poorly understood. The potential effects on reproductive performances, including oogenesis, are of particular concern. In this study, we investigate the reproductive performances and related mRNA abundance of the zooplankton Daphnia magna under conditions of ZnO exposure and heat stress. The results revealed that ZnO and elevated temperature delayed maturity and juvenile production of D. magna. Histological observations indicated that oogenesis was inhibited, and the number and size of oocytes were reduced in the condition of ZnO exposure under heat stress. Eventual offspring in the same treatment exhibited decreased numbers, size, and quality. Congenital juvenile anomalies were increased, such as deformed eye, and impaired antenna and tail spine. Moreover, both ZnO and elevated temperature treatments inhibited expression levels of reproduction-related genes (vtg, EcR and VMO1) and induced the dmrt93b gene involved in the production of male offspring. Furthermore, we found that D. magna tried to cope with ZnO and thermal stress by upregulating hsp90, HIF-1α and HIF-1β. ZnO and heat stress inhibited the reproductive capacity of D. magna, produced deleterious effects on reproduction-associated physiological pathways, and damaged reproductive outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.