Abstract
This paper presents numerical simulation of the thermal stress as well as experimental results establishing thermal and mechanical properties of high volume fly ash (HVFA) concrete of 50% replacement of cement by fly ash. The HVFA concretes are made with fine and coarse aggregates of limestone, so it has a significant low coefficient of thermal expansion (CTE). The low CTE may contribute to reduction of thermal stress in addition to low temperature rise. On the contrary, gradual strength development of HVFA concrete at early age should be considered for possibility of thermal cracking. To examine the crack resistance of the HVFA concrete at early age, a uniaxial tension test using prismatic concrete specimens was performed and tensile properties such as tensile strength and tensile Young’s modulus were quantified for 75 samples. Adiabatic temperature rise and CTE tests were also conducted to provide more evidence of the thermal properties. The thermal properties measurements confirmed that CTEs of the HVFA concrete are approximately 5×10−6/°C. The thermal and mechanical properties of HVFA concrete were adopted in a Finite Element (FE) simulation using a model of T-shaped bridge pier. The numerical simulation confirmed the favorable thermal properties contributing to decrease of thermal stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.