Abstract

The structure of cooling stave was simplified with equivalent convective heat transfer coefficient, and the thermal stress axisymmetric calculation model of blast furnace hearth linings under erosion state was established. The thermal stresses of familiar erosion states were analyzed. The thermal stress concentration of erosion part is an importance cause of erosion development. ‘Elephant-foot’ erosion seldom develops to ‘boiler-bottom’ erosion. ‘Boiler-bottom’ erosion is a ideal long life erosion state. When the erosion stabilizes, smaller cooling intensity is favorable to linings stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.