Abstract

A detailed study is reported of the potential thermal stress effects and surface cracking of human teeth after absorption of laser energy. This study was motivated by the desire to define damage thresholds if lasers are used for preventive dentistry techniques. A large group of extracted teeth was exposed to manually pulsed bursts of energy of varying durations from a CW CO2 laser. The teeth were examined photographically under magnification before and after irradiation, using fluorescent dye to facilitate observation of cracks in the tooth surface. In an attempt to understand the cracking phenomena, predictions of the temperatures and thermal stresses were made. The tooth surface in the vicinity of the focused beam impingement was assumed to behave as a semi-infinite solid for the short periods of time considered. Estimated stresses where cracking occurred are compared in the paper to measured values of the ultimate strength of tooth enamel. Results are shown to be in reasonable agreement with predictions. Based on this work, a criterion is given for minimizing surface damage to the tooth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.