Abstract

ABSTRACT We analyzed the thermal stress on a thermoviscoelastic hollow cylinder with temperature-dependent thermal properties with the finite difference method. It was gradually heated at the inner surface and the outer surface was kept at the initial temperature. The cylinder material was thermorheologically simple and had a temperature-dependent coefficient of linear thermal expansion, thermal conductivity, and thermal diffusivity (and/or specific heat). A bisphenol A–type epoxy resin was chosen as the thermoviscoelastic material of the cylinder for numerical analysis. Based on these results, we discuss the effects of thermoviscoelasticity and temperature-dependent thermal properties on the stress field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.