Abstract

Spherical tanks have the potential for cost reduction in sensible thermal energy storage (TES) systems, by using less tank building material and insulation. The current CFD study compares the Thermal Efficiency (TE) of a thermocline storage system in a spherical tank to a cylindrical tank of the same volume. A parametric study is then performed on a spherical tank during the discharge process to determine the flow parameters that govern the thermocline formation and entrainment. The following parameters are used: tank diameter to inlet diameter ratio D/d = 10, inlet velocity (0.02–0.1 m/s), and ΔT (10–70° C), leading to an inlet Froude number (0.4–3), inlet Reynolds number (500–7500), and tank Richardson number (2–100). The results show a significant correlation between the inlet Reynolds and inlet Froude numbers, and the tank TE, in addition to a weak correlation between the tank Richardson number, based on the tank diameter, and the tank TE. The parametric study also shows a maximum tank TE at a Froude number equal to 0.5, and a proportional decrease of TE as the Reynolds number increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call