Abstract

Measurement-based quantum computation utilizes an initial entangled resource state and proceeds with subsequent single-qubit measurements. It is implicitly assumed that the interactions between qubits can be switched off so that the dynamics of the measured qubits do not affect the computation. By proposing a model spin Hamiltonian, we demonstrate that measurement-based quantum computation can be achieved on a thermal state with always-on interactions. Moreover, computational errors induced by thermal fluctuations can be corrected and thus the computation can be executed fault tolerantly if the temperature is below a threshold value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.