Abstract

Thermal state of a conical antenna used for big data transfer was determined in this work. Its cooling is provided through porous media saturated with water-based copper nanofluid (NF) whose volume fraction varies in the 0% (pure water) [Formula: see text] range. Otherwise, the ratio between the thermal conductivity of the highly porous material and that of the fluid base (water) varies between 4 and 41.2. The solution is obtained by means of 3D numerical approach based on the volume control method using the SIMPLE algorithm in the large [Formula: see text]–[Formula: see text] Rayleigh number range. The average temperature of the antenna can be determined with the correlation proposed in this work for any combination of the thermal conductivity ratio, volume fraction and Rayleigh number. This new and original correlation makes it possible to determine the optimal values of these three influencing parameters to ensure the correct antenna’s operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.