Abstract

Fabrication of sustainable photo-cured vegetable oil epoxidized acrylates were performed with two distinct methods using stereolithographic (SLA) 3D printer set up and UV-LED lamp. Two reactive monomers of 1,6-hexanediol diacrylate and trimethylolpropane triacrylate were selected to adjust the 3D printing conditions and improve thermal properties of the photocured polymer. Thermal destruction was preformed using thermogravimetric analysis (TGA) set up combination with FTIR sensor to investigate decomposition products. The glass transition of the polymer was determined using modulated differential scanning calorimetry (MDSC). The obtained results show that addition of appropriate reactive comonomers can increase glass transition temperature by 10°C, thermal degradation temperature by 28°C, and also decrease necessary resin photocuring time by almost a half from 4 sec up to 2 sec. Thermal destruction kinetics investigation by Friedman method revealed that addition of the reactive comonomers increases necessary activation energy for thermal destruction by 10% with UV-LED lamp, while curing resin with SLA printer further increases activation energy by 25%. The 3D printed resin release less hazardous gases and more CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.