Abstract

We consider a nonflat Friedmann–Robertson–Walker universe filled by a pressureless dark matter and Tsallis holographic dark energy (THDE) whose IR cutoff is the apparent horizon. We also consider both noninteracting and interacting cases in which a mutual interaction between the two dark sectors of cosmos is taken into account. For the noninteracting case, the density, equation of state (EoS) and the deceleration parameters show a satisfactory behavior by themselves, and the phantom line is not crossed. In this manner, unlike the flat case for THDE (Tavayef et al. in Phys Lett B 781:195, 2018), where the squared of sound speed is always negative, the squared of sound speed is negative and approaches zero at future. In the interacting case, the phantom line is crossed by EoS parameter, the squared of the sound speed is always negative and the density and deceleration parameters have acceptable behavior. Finally, by studying the thermodynamic parameters, namely the heat capacities and the compressibility criterions, the thermal stability of both cases are discussed which reveals that both models are thermodynamically unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.