Abstract

Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in samples deposited on silicon substrates with a 3.3 MeV of He++ beam used to perform Rutherford Backscattering Spectroscopy (RBS), Non-Rutherford backscattering Spectroscopy (NRBS) and Elastic Recoil Detection Analysis (ERDA). Thermal stability with respect to trapped hydrogen in the film has been studied. As the films were heated in-situ in the vacuum using a o non-gassy button heater, hydrogen was found to be decreasing around 400° C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.