Abstract
We studied the solid state dewetting of nanocrystalline Au thin films deposited on prismatic single crystalline KCl whiskers. The arrays of KCl whiskers were grown on porous substrates under well-defined humidity and temperature conditions. Single crystalline prismatic KCl whiskers with a very high aspect ratio, [001] axis and {100} side facets were obtained. The whiskers were coated with thin conformal Au films of 20-30 nm in thickness. The annealing of these core-shell whiskers at the temperature of 350oC resulted in solid state dewetting of the Au film, with the dewetting processes occurring much faster along the whisker edges than on the side facets. The orientation relationships between Au and KCl were determined by employing similarly prepared thin Au films deposited on the flat KCl (100) substrates. Inspired by our experimental results, we developed a numerical model describing the curvature-gradient driven and surface diffusion-controlled growth of a hole in the thin film deposited on a curved substrate. The model predicted the growth of anisotropic elliptical holes elongated along the whisker axis. We discuss the experimental results in terms of the proposed model, indicating the importance of the change in orientation relationship between the Au grains and KCl whisker along the whisker edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.