Abstract

Cationic Mn porphyrins are among the most potent catalytic antioxidants and/or cellular redox modulators. Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE-2-PyPCl5) is the Mn porphyrin most studied in vivo and has successfully rescued animal models of a variety of oxidative stress-related diseases. The stability of an authentic MnTE-2-PyPCl5 sample was investigated hereon by thermogravimetric, derivative thermogravimetric, and differential thermal analyses (TG/DTG/DTA), under dynamic air, followed by studies at selected temperatures to evaluate the decomposition path and appropriate conditions for storage and handling of these materials. All residues were analyzed by thin-layer chromatography (TLC) and UV–vis spectroscopy. Three thermal processes were observed by TG/DTG. The first event (endothermic) corresponded to dehydration, and did not alter the MnTE-2-PyPCl5 moiety. The second event (endothermic) corresponded to the loss of EtCl (dealkylation), which was characterized by gas chromatography–mass spectrometry. The residue at 279°C had UV–vis and TLC data consistent with those of the authentic, completely dealkylated analog, MnT-2-PyPCl. The final, multi-step event corresponded to the loss of the remaining organic matter to yield Mn3O4 which was characterized by IR spectroscopy. Isothermal treatment at 188°C under static air for 3h yielded a mixture of partially dealkylated MnPs and traces of the free-base, dealkylated ligand, H2T-2-PyP, which reveals that dealkylation is accompanied by thermal demetallation under static air conditions. Dealkylation was not observed if the sample was heated as a solid or in aqueous solution up to ∼100°C. Whereas moderate heating changes sample composition by loss of H2O, the dehydrated sample is indistinguishable from the original sample upon dissolution in water, which indicates that catalytic activity (on Mn basis) remains unaltered. Evidently, dealkylation at high temperature compromises sample activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.