Abstract
Sea buckthorn has gained importance as a versatile nutraceutical, due to its high nutritive value in terms of carotenoids content. β-Lactoglobulin (β-LG) is a natural carrier for various bioactive compounds. In this study, the effect of thermal treatment in the temperature range of 25 to 100°C for 15min on the complex formed by β-LG and carotenoids from sea buckthorn was reported, based on fluorescence spectroscopy, molecular docking and molecular dynamics simulation results. Also, the berries extracts were analyzed for their carotenoids content. The chromatographic profile of the sea buckthorn extracts revealed the presence of zeaxanthin and β-carotene, as major compounds. The Stern-Volmer constants and binding parameters between β-LG and β-carotene were estimated based on quenching experiments. When thermally treating the β-LG–carotenoids mixtures, an increase in intrinsic and extrinsic fluorescence intensity up to 90°C was observed, together with blue-shifts in maximum emission in the lower temperature range and red-shifts at higher temperature. Based on fluorescence spectroscopy results, the unfolding of the protein molecules at high temperature was suggested. Detailed information obtained at atomic level revealed that events taking place in the complex heated at high temperature caused important changes in the β-carotene binding site, therefore leading to a more thermodynamically stable assembly. This study can be used to understand the changes occurring at molecular level that could help food operators to design new ingredients and functional foods, and to optimize the processing methods in order to obtain healthier food products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.