Abstract

ABSTRACTThe morphological stability and strength retention following elevated temperature exposure or thermal cycling will be crucial in exploiting the extremely high strengths of nanolayered materials in advanced engineering applications. The effects of elevated temperature (≤800°C) vacuum annealing on the morphological stability and mechanical properties of sputter deposited Cu-Nb multilayers with 75 nm bilayer period are reported here. Even after 800°C/ 1 hour anneal, the continuity of the layered structure is maintained and the bilayer periods are unchanged. The in-plane grain sizes in both Cu and Nb coarsened but were anchored at grooved boundaries preventing further growth. For a constant bilayer period, the effect of increasing the in-plane grain size on the multilayer hardness is found to be insignificant. After annealing, the layers are observed to be offset by shear along a vertical plane at the triple point junctions that have equilibrium groove angles aligned in a zig-zag pattern. A new mechanism is proposed for the evolution of this “anchored” structure that is resistant to further morphological instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.