Abstract
The thermal stability of Ru–Re NPs on γ-alumina support was studied in hydrogen at 800 °C and in air at 250–400 °C. The catalysts were synthesized using Cl-free and Cl-containing Ru precursors and NH4ReO4. Very high sintering resistance of Ru–Re NPs was found in hydrogen atmosphere and independent of Ru precursors and Re loading, the size of them was below 2–3 nm. In air, metal segregation occurred at 250 °C, leading to formation of RuO2 and highly dispersed ReOx species. Ruthenium agglomeration was hindered at higher Re loading and in presence of residual Cl species. Propane oxidation rate was higher with the Ru(N)–Re catalysts than with Ru(N) and that containing Cl species. The Ru(N)–Re (3:1) catalyst exhibited the highest activity and the lowest activation energy (91.6 kJ mol−1) what is in contrast to Ru(Cl)–Re (3:1) which had the lowest activity and the highest activation energy (119.3 kJ mol−1). Thus, the synergy effect was not observed in Cl-containing catalysts.Graphic
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.