Abstract

The thermal stability of retained austenite (RA) and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained austenite during tempering within the range from 200 to 500 °C were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and tensile testing. The results showed that there was a slight decrease in the RA volume fraction with increasing tempering temperature up to 400 °C. This caused a slight increase in the ultimate tensile strength (UTS) and a slight decrease in the total elongation (TE); thus, the product of UTS to TE (UTS×TE) as high as 31 GPa • % was obtained and remained nearly unchanged. However, a portion of the RA began to decompose when tempered at 500 °C and thus caused a ∼35% decrease of the RA fraction and a ∼16% decrease of the value of UTS×TE. It is concluded that the ultrafine lamellar duplex structure is rather stable and the excellent combination of strength and ductility could be retained with tempering temperature up to 400 °C. Thus, thermal processes such as galvanization are feasible for the tested steel provided that their temperatures are not higher than 400 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.