Abstract
Ionic liquids are an alternative electrolyte for lithium-ion batteries which are expected to increase thermal stability of the device. The thermal stability of lithium bis(fluorosulfonyl)imide salt (LiFSI) in 1-methyl-3-propylpyrrolidinium bis(fluorosulfonyl)imide (P13FSI) ionic liquid electrolyte was investigated at elevated temperatures after cycling in contact with commercially available electrode materials. Six commercial electrodes were investigated; LiFePO4, Li1.2Ni0.15Co0.1Mn0.55O2, LiMn1.5Ni0.5O4, Li4Ti5O12, LiCoO2 and graphite. Differential scanning calorimetry was performed on electrode | electrolyte combinations in high pressure hermetically sealed crucibles from 25 to 600°C. Of the electrodes studied here, LiFePO4 showed the lowest heat release and Li4Ti5O12 showed the highest onset temperature under the conditions used. Additionally, the ionic liquid electrolyte showed superior thermal stability as compared to the conventional electrolyte when used with LiMn1.5Ni0.5O4 and Li4Ti5O12 electrodes. Incremental state of charge investigations with both LiFePO4 and Li4Ti5O12 half cells showed that thermal stability varies with state of charge of the electrode. The thermal stability advantage provided by P13FSI electrolyte with each electrode should be considered to determine if the benefits of higher decomposition temperatures are outweighed by the higher energy released during ionic liquid decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.