Abstract

The thermal stabilities of epoxy resin/diethyl bis(2-hydroxyethyl)aminomethylphosphonate (EP/DBAMP) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. Kissinger and Flynn–Wall–Ozawa methods were used to study the thermal degradation process. The results showed a remarkable increase of activation energy ( E) in the presence of DBAMP, which indicated that the addition of DBAMP retarded the thermal degradation of EP. The Flynn–Wall–Ozawa analysis further revealed that DBAMP significantly increased the activation energy in the early stage of EP’s thermal degradation, demonstrating that DBAMP had improved the initial thermal stability and modified the flame retardancy of EP in the thermal degradation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call