Abstract

The thermal stability of N,N′-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxdiimide (EP-PTCDI) thin films deposited on Cu(100) has been characterized by using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). For one monolayer absorption, the molecules arrange with a (34−26) symmetry. After annealing the sample at 500 K, XPS measurements show that the molecules dissociate leaving the PTCDI core of the molecule on the surface. According to that, STM measurements show new images of molecules with the size of the PTCDI core, and without the characteristic ethylpropyl end groups. These remaining molecules cover most of the surface with ordered islands, presenting a different molecular arrangement. With the help of the experimental and simulated LEED patterns, the molecular arrangement can be described by a (−563.53) superstructure and its four rotational equivalents. However, complementary measurements of STM images at different tip-to-s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.