Abstract
Thermal decomposition of hydrothermal micro- and nano-sized CrO2 powders obtained at the presence of nuclei with different structures (Mo + Sb, Te + Sn) and an iron dopant (Te + Sn + Fe) was studied by thermal analysis (DTG–DSC), XRD, SEM, VSM methods, and SSA estimation. It has been found that the decomposition of chromium dioxide happens with formation of CrO1.5 at 450–540 °C, no changes in the lattice parameters were observed. The temperature of the process for nano-sized CrO2 samples is 100 °C lower than for micro-sized sample. The decomposition of nanopowders occurs in two stages with DTG and DSC peaks at about 470 and 500 °C correspondingly. The particles under study consist of a CrO2 core and a CrOOH shell, so the sample transformation begins from the shell oxidation resulting in the CrO2 surface layer formation. The first peak corresponds to the decomposition of such layer to Cr2O3, and the second—to the core transformation which occurs later. For the iron-containing powders, the additional endoeffect and mass loss has been found at 550 °C, which is determined by presence of a FexCr1−xO2 solid solution mainly located in the particle shell. The shift toward lower temperatures for nano-sized samples decomposition peak and the observed peak splitting indicate an impact of the dimensional effect on powder thermal stability. Obtained data show that nanopowders are highly stable up to 200 °C and can be used for magnetoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.