Abstract
A series of microcapsules filled with epoxy resins with poly(urea–formaldehyde) (PUF) shell were synthesized by in situ polymerization, and they were heat-treated for 2 h at 100 °C, 120 °C, 140 °C, 160 °C, 180 °C and 200 °C. The effects of surface morphology, wall shell thickness and diameter on the thermal stability of microcapsules were investigated. The chemical structure and surface morphology of microcapsules were investigated using Fourier-transform infrared spectroscope (FTIR) and scanning electron microscope (SEM), respectively. The thermal properties of microcapsules were investigated by thermogravimetric analysis (TGA and DTA) and by differential scanning calorimetry (DSC). The thermal damage mechanisms of microcapsules at lower temperature (<251 °C) are the diffusion of the core material out of the wall shell or the breakage of the wall shell owing to the mismatch of the thermal expansion of core and shell materials of microcapsules. The thermal damage mechanisms of microcapsules at higher temperature (>251 °C) are the decomposition of shell material and core materials. Increasing the wall shell thickness and surface compactness can enhance significantly the weight loss temperatures ( T d) of microcapsules. The microcapsules with mean wall shell thickness of 30 ± 5 μm and smoother surface exhibit higher thermal stability and can maintain quite intact up to approximately 180 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.