Abstract

Recently identified tin sulfide polymorph with a cubic crystalline structure (SnS-CUB) and a large direct bandgap (1.74 eV) is described in theoretical studies as ‘metastable’. This implies that it is less stable than the orthorhombic polymorph (SnS-ORT) with indirect bandgap (1.1 eV). We find that SnS-CUB thin film (400 nm in thickness) and powder prepared by a chemical deposition method remain structurally stable, with 64 atoms in a large cubic unit cell of lattice constant 11.6 Å, even after they have been heated at 500 °C. Upon such heating the optical bandgap (Eg) of thin films decreased from 1.76 eV—direct gap in as-prepared thin films to 1.6 eV, and the electrical conductivity (σ) reduced from 3 × 10−7 to 1 × 10−7 Ω−1 cm−1. During prolonged heating at 500 °C for 30 min, some structural changes do happen: there is a significant preferential orientation of (410) crystalline planes of SnS-CUB parallel to substrate surface, and/or of (400) planes of SnS-ORT with identical inter-planar distance of 2.816 Å. Consequently, Eg was 1.24 eV and σ, 10−3 Ω−1 cm−1 (p-type). We also found that at a reduced pressure of 30 Torr nitrogen, such changes in SnS-CUB set-in at a temperature of 435 °C. Grazing incidence x-ray diffraction suggested that this transformation initiated at the glass/film interface. The results on the stability and ‘meta-stability’ of SnS-CUB offer guidelines toward its applications in photovoltaics and in nonlinear optical devices which depends on its lack of center of symmetry persisting at higher operating temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call