Abstract

The effect of different temperatures (up to 900 °C) on the morphology of mesoporous silica-coated gold nanorods was systematically investigated. Gold nanorods with different aspect ratios (AR ranging from 2.5 to 4.3) were coated with a 15 nm thick mesoporous silica shell. Silicon supported monolayers of the particles were annealed in the temperature range of 300–900 °C. The resulting changes in particle morphology were investigated using scanning electron microscopy and visible wavelength extinction spectroscopy. The silica coating generally improved the stability of the nanorods from ca. 250 °C by several hundreds degree Celsius. For nanorods with AR < 3 the shape and the aspect ratio change is only moderate up to 700 °C. At 900 °C these nanorods became spherical. For nanorods with AR>3, lower stability was found as the aspect ratio decrease was more significant and they transformed into spherical particles already at 700 °C. It was confirmed by investigating empty silica shells that the observed conformal change of the shell material when annealing core/shell particles is dictated by the deformation of the core particle. This also implies that a significant mechanical stress is exerted on the shell upon core deformation. In accordance with this, for the highest aspect ratio (AR ∼ 4) nanorod the shell breaks up at 900 °C and the gold cores were partially released and coalesced into large spherical particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.