Abstract

The thermal stability of bio-oil influences its application in industry and is, therefore, a very important factor that must be taken into consideration. In this study, the stability of low and high molecular weight (Mw) fractions of bio-oil obtained from the hydrothermal liquefaction (HTL) of lignin in subcritical water was studied at an elevated temperature (80 °C) for a period of 1 h, 1 day and 1 week. The changes in molecular weight (gel permeation chromatography (GPC)) and chemical composition (gas chromatography–mass spectrometry (GC–MS) and 2D heteronuclear single quantum correlation (HSQC) NMR (18.8 T, DMSO-d6)) of low and high Mw fractions of the HTL bio-oil (i.e. light oil (LO) and heavy oil (HO)) were evaluated before and after ageing. It was found that only a slight formation of high Mw insoluble structures was obtained during ageing at elevated temperature for 1 week: 0.5% for the LO and 3.1% for the HO. These higher Mw moieties might be formed from different polymerisation/condensation reactions of the reactive compounds (i.e. anisoles, guaiacols, phenols, methylene (–CH2–) groups in phenolic dimers and xanthene). The high Mw insolubles in both the LO and the HO were analysed for structural composition using 2D HSQC NMR to obtain a better understanding of the changes in the composition of bio-oil fractions during the accelerated ageing process. In addition, a chemical shift database in DMSO-d6 was analysed for a subset of phenolic model compounds to simplify the interpretation of the 2D HSQC NMR spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call