Abstract

Theories of thermal stability for high-temperature materials based on the application of static thermoelasticity equations to nonstationary thermal processes are reviewed. A new criterion for thermal stability, R = ΔTd, is proposed. Anew model, based on the maximum stress theory and the quantum theory of thermal field, is proposed; in terms of this model, the stress-strain state of a solid subjected to thermal shock can be determined by solving equations of thermal strength and heat conduction with allowance made for inertial terms in thermal stability equations. Thermostability is considered as a physical parameter characterizing the resistance of materials to failure in a nonstationary temperature field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.