Abstract
A thermal stability analysis of functionally graded material (FGM) isotropic and sandwich plates is carried out by virtue of a refined quasi-3D Equivalent Single Layer (ESL) and Zig-Zag (ZZ) plate models developed within the framework of the Carrera Unified Formulation (CUF) and implemented within the Hierarchical Trigonometric Ritz Formulation (HTRF). The Principle of Virtual Displacements (PVD) is used both to derive the thermal stability differential equations with natural boundary conditions and to develop the HTRF. Uniform, linear, and non-linear temperature rises through-the-thickness direction are taken into account. The non-linear temperature distribution is given in different forms: 1) functionally graded; 2) solution of the one-dimensional Fourier heat conduction equation; and 3) sinusoidal. Several FGM sandwich plate configurations are investigated. Parametric studies are carried out in order to evaluate the effects of significant parameters, such as volume fraction index, length-to-thickness ratio, boundary conditions, aspect ratio, sandwich plate type, and temperature distribution through-the-thickness direction, on the critical buckling temperatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.