Abstract

Abstract Diamond-like carbon (DLC) films with added silicon content from 0 to 19.2 at.% were deposited using r.f. PECVD (radio frequency plasma enhanced chemical vapor deposition). Fourier transform IR (FTIR) spectrometry, Raman spectrometry and X-ray photoelectron spectrometry (XPS) were used to determine the structural change of the annealed DLC films in ambient air. By increasing the annealing temperature the CHn and Si–H groups in the FTIR spectra decrease because of hydrogen evolution, whereas the intensities of CO and Si–O peaks increase owing to oxidation. From Raman spectra, the integrated intensity ratio ID/IG of the pure DLC films and the silicon-doped films increases at 300 and 400 °C, respectively, whereas the observable shoulder of the D band occurs at 400 and 500 °C, respectively, which indicates that the addition of silicon improves the thermal stability of DLC films. Using XPS analysis, a surface reaction for the annealed films is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.