Abstract

Yeast as well as micromycetes α-L-rhamnosidases, currently, are the most promising group of enzymes. Improving of the thermal stability of the enzyme preparation are especially important studies. Increase in stability and efficiency of substrate hydrolysis by α-L-rhamnosidase will improve the production technology of juices and wines. The aim of our study was to investigate the rate of naringin hydrolysis by α-L-rhamnosidase from Cryptococcus albidus, and also some aspects of the thermal denaturation and stabilization of this enzyme. We investigated two forms of α-L-rhamnosidase from C. albidus, which were obtained by cultivation of the producer on two carbon sources--naringin and rhamnose. A comparative study of properties and the process of thermal inactivation of α-L-rhamnosidases showed that the inducer of synthesis had no effect on the efficiency of naringin hydrolysis by the enzyme, but modified thermal stability of the protein molecule. Hydrophobic interactions and the cysteine residues are involved in maintaining of active conformation of the α-L-rhamnosidase molecule. Yeast α-L-rhamnosidase is also stabilized by 0.5% bovine serum albumin and 0.25% glutaraldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.