Abstract
When using Schottky barrier diodes (SBDs) on silicon (Si) to study the thermal stability of radiation-induced defects, point defects injection into the silicon substrate can occur at temperatures where silicidation occurs. These injected point defects can react with the radiation-induced defects and may lead to an incorrect picture of annealing studies of these defects. In order to overcome this problem, we have annealed (1) ruthenium (Ru), cobalt (Co), nickel (Ni) and platinum (Pt) SBDs to form stable silicides on phosphorus (P) doped Si and (2) have measured the electrical characteristics of defects introduced during diodes fabrication by electron beam deposition (EBD), using conventional and (high resolution) Laplace (L-) deep level transient spectroscopy (DLTS). A primary electron trap at 0.48 eV below the conduction band was observed after EBD processing of the contacts. Isochronal annealing of the SBDs at 350 °C, annealed-in defects 0.05, 0.09, 0.18 and 0.28 eV below the conduction band. All the EBD-induced defects were removed after annealing at 600 °C. Primary defect depth profile versus annealing temperature results are also presented in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.