Abstract

In situ x-ray diffraction spectra (25–1000 °C) have been measured as a function of temperature for proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 (x=0.0–0.4) ceramics in CO2 atmosphere. Atomic vibrations before and after exposure to CO2 were obtained by using the micro-Raman scattering (150–1600 cm−1). Ba(Zr0.8Y0.2)O2.9 and Ba(Zr0.6Ce0.2Y0.2)O2.9 reveal a promising thermal stability in CO2 without apparent decomposition up to 1000 °C. However, Ba(Zr0.5Ce0.3Y0.2)O2.9 and Ba(Zr0.4Ce0.4Y0.2)O2.9 exhibit thermally stable below 550 °C and then proceed an obvious chemical decomposition of BaCO3 and Zr0.8−xCexY0.2O2 above 550 °C, which were clearly evidenced by the Raman vibrations of 1057 and 466 cm−1, respectively. A first-order orthorhombic-hexagonal structure transition was confirmed in BaCO3 in the region of 810–850 °C upon heating. This study suggests that the Ba(Zr0.8−xCexY0.2)O2.9 ceramics with x≤0.2 are promising candidates for proton-conducting applications in CO2-containing environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.